Relationship of Serum Leptin Level with Chronological Age and Body Mass Index in Adolescent Girls

Uzma Ather, Tanvir Ali Khan Shirwany, Irum Imran, Muhammad Saleem, Farah Gul, Azka Saleem, Javeria Zafer

Abstract

Objective: The study aimed to evaluate the effect of chronological age and Body Mass Index (BMI) on concentration of leptin in serum.

Methods: It is a cross-sectional comparative study. One hundred and fifty two girls were selected from different schools in Lahore. Their demographic data was recorded. The sample was divided into 10 groups, comprising approximately 15 girls in each age group with age range of 8.0 to 17.99 years. Their height and weight were measured to determine their BMI. Blood samples were collected to determine the serum leptin level by Enzyme Linked Immunosorbent Assay (ELISA) method. Pearson correlation test were applied to observe the correlation between serum leptin and BMI.

Results: The mean BMI is 18.20±3.70 kg/m² and mean serum leptin value is 6.653±7.11 ng/ml over all groups. A positive correlation was observed between serum leptin and chronological age, (r = 0.225, and p <0.005). A strong positive correlation was observed between BMI and serum leptin concentration (r =0.604, P<0.000). The mean BMI in underweight, normal weight and overweight subjects were 14.35±1.63 kg/m², 17.85±2.45 kg/m², 24.08±2.98 kg/m², and mean serum leptin concentrations 3.28±3.90 ng/ml, 5.32±5.46 ng/ml, 16.42±8.39 ng/ml respectively (r = 0.511, and p <0.000).

Conclusion: Serum leptin level is positively correlated with chronological age and BMI. This study indicates that serum leptin increases with advancement in chronological age and higher BMI results in higher serum leptin level.

Received | 12-05-2017; Accepted | May 2, 2018 | Published | June 20, 2018

Corresponding Author | Dr. Uzma Ather, Assistant Professor of Physiology, Continental Medical College Lahore.

Email: atherruzma@yahoo.com

DOI | http://dx.doi.org/10.21649/journal.akemu/2018/24.2.6-12

Keywords | Chronological age, Leptin, Body mass index, Adolescence, Girls

Introduction

Leptin is a hormone, protein in nature with important effect in modulating body weight, and metabolism in rodents, decreasing weight and increasing energy consumption,(1,2) but little is known about its mechanism of action in human being. It is expressed predominantly by adipose tissue. Over the last two centuries especially in last few decades, rapid development in economics, leads to better nutrition, resulting in more weight gain in early childhood and adolescence leading to childhood obesity, which is now a worldwide problem. The body fat is usually clinically measured as Body Mass Index (BMI). Serum leptin level represents as a marker of adipose tissue and in turn of increased BMI. Relationship of serum leptin with age was also established in many...
studies revealing that from five years up to 10 years of age serum leptin increases in both sexes along with BMI but after word in male it decreases but in female it continue to increase till 13 to 15 years. The rise of serum leptin with age is related to BMI.\(^{(5,6)}\)

Concentration of serum leptin is more in obese subject than normal weight subjects, and low in underweight which rises after increase in weight.\(^{(7,8)}\) In addition, serum leptin level is influenced by different hormones and food intake. Fasting leads to reduction in leptin level by 30% and over eating increases leptin level by 50%. This increase is greater if food is rich in fat.\(^{(9)}\) Fat in subcutaneous tissue contains leptingenes. These genes are expressed in prepubertal and pubertal girls. A positive relationship between serum leptin level and subcutaneous tissue has been demonstrated.\(^{(1,9,10)}\)

Many studies are carried out about leptin and its relationship with puberty, pregnancy, adulthood obesity but this is the first study carried in adolescent girls, to observe the relationship of serum leptin with chronological age and BMI in young girls in Pakistan. We will compare our results with literature taking literature as control group.

Materials and Method

It is Cross-sectional Comparative study. One hundred and fifty eight school going adolescent female students, ages between 8 to 17.99 years, were recruited in the study from different schools of Lahore. Six children were excluded from the study having incomplete data information so a total 152 were the final participants. Approval of this study was taken from Ethical Committee of Post Graduate Medical Institute and Advanced Study Review Board of University of Health Sciences Lahore and was completed within one year from September, 2011 to June, 2012. Simple random sampling (using balloting method) was applied.

Sample size was calculated with the following formula:

\[
N = \frac{(Z_{1-\alpha/2} + Z_{1-\beta})^2}{\left[\log_e \left(\frac{1+r}{1-r} \right) \right]^2} + 3
\]

Where, \(Z_{1-\alpha/2} \) is the desired level of significance = 5\%, \(Z_{1-\beta} \) is the correlation coefficient = 0.26\(^2\). The calculated sample size turned out 152 subjects.

The children voluntarily participated in this study. Children with any known metabolic syndromes, any chronic disease and congenital anomalies were excluded. Informed and voluntary consent was taken from parents and girls. Confidentiality of the data was ensured. Laboratory work was performed in the Postgraduate Medical Institute, Lahore and University of Health Sciences, Lahore.

Height, weight and age of girls were taken and recorded on a proforma. Date of birth was asked and confirmed from school register. The decimal age of each child was calculated from decimal chart\(^{22}\). Their body weight (up to 0.1 kg) was recorded by a portable standard weighing scale (Kinlee, YRBB-120) in kilograms in normal school clothes without shoes. Their height was measured in meters (up to 0.1 cm) without shoes with mandible parallel to floor with portable manual height board, (Seca gmbh co. kg Model:210, 1721009, CE 0123. Made in Germany).\(^{(11,13)}\) To assess the effect of age on parameters measured, the children were grouped according to their chronological age. From 8 to 17.99 years, girls were divided into 10 groups almost approximately 15 students in each age group. BMI was calculated by dividing weight in kg by square of height in meters. BMI less than 5\(^{th}\) percentile considered as underweight (BMI group 1), between 5\(^{th}\) to 85\(^{th}\) percentile as normal weight (BMI group 2) and more than 85\(^{th}\) percentile considered as overweight Body Mass Index BMI group.\(^{(13,14)}\)

Participants were asked to fast over night 5-ml of blood was obtained from each girl by venepuncture with aseptic measures. Universal precautions were observed, including spirit swabbing of skin, use of sterile needles and syringes, proper disposal of used syringes in sharp bin, disinfection of bio-hazardous material (used swab and syringes), and cleaning of table surface with disinfectants.\(^{27}\) To minimize the influence of diurnal variation in serum leptin concentration, all samples were collected between 10 am to 12 noon 18 and after clotting at 4\(^{\circ}\)C; the serum was separated by centrifugation at 2000xg for 10 min. The samples were stored in serum cups at -70\(^{\circ}\)C. Serum leptin was measured by Enzyme Linked Immunosorbent Assay (ELISA) method.\(^{(8,18)}\) Serum leptin was estimated by using commercially available
ELISA Kit (AviBion Research ELISA, Orgenium Laboratories Finland). Procedure was performed as described in manual of the kit.

Data was entered into Statistical Package for the Social Sciences (SPSS) (Statistical package for social sciences) version 16 and analyzed. Mean + Standard Deviation (SD) was given for quantitative variables i.e. serum leptin concentration, chronological age, and BMI. Pearson's correlation test was applied to observe the relationship of serum leptin concentration with chronological age and body mass index. A value of p < 0.05 was considered as statistically significant.

Results

The data of all the groups, pertaining to mean chronological age, mean BMI and mean serum leptin level is given in Table 1. This table revealed a significant increase in BMI (P < 0.000) with age, but non-significant difference in serum leptin concentration (P < 0.436) in different age groups.

A positive correlation between serum leptin and chronological age was observed, (r = 0.225, and p < 0.005) (Figure 1). Serum leptin concentrations varied among the girls over almost 30-fold range, changing with chronological age of the subjects.

Pearson's correlation test was applied to observe the relationship between serum leptin and BMI (Figure 2). A moderately positive correlation between serum leptin and BMI was observed (r = 0.604, and p < 0.000).

Table 1: Chronological Age, BMI, and Serum Leptin Levels of the Subjects.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age Range (Mean Age) (Years)</th>
<th>BMI (Kg/m²) (Mean ±SD)</th>
<th>Serum Leptin (ng/ml) (Mean ±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>15</td>
<td>8.99 (8.40)</td>
<td>15.62 ±1.50</td>
<td>4.39 ±5.21</td>
</tr>
<tr>
<td>Group 2</td>
<td>16</td>
<td>9.99 (9.37)</td>
<td>15.81 ±2.45</td>
<td>4.91 ±4.91</td>
</tr>
<tr>
<td>Group 3</td>
<td>17</td>
<td>10.99 (10.57)</td>
<td>16.66 ±2.96</td>
<td>4.90 ±4.81</td>
</tr>
<tr>
<td>Group 4</td>
<td>15</td>
<td>11.99 (11.40)</td>
<td>17.01 ±3.45</td>
<td>5.06 ±5.40</td>
</tr>
<tr>
<td>Group 5</td>
<td>15</td>
<td>12.99 (12.60)</td>
<td>17.11 ±2.92</td>
<td>5.75 ±5.37</td>
</tr>
<tr>
<td>Group 6</td>
<td>15</td>
<td>13.99 (13.57)</td>
<td>18.44 ±2.50</td>
<td>8.11 ±7.36</td>
</tr>
<tr>
<td>Group 7</td>
<td>15</td>
<td>14.99 (14.44)</td>
<td>18.91 ±2.78</td>
<td>8.14 ±8.37</td>
</tr>
<tr>
<td>Group 8</td>
<td>16</td>
<td>15.99 (15.40)</td>
<td>19.63 ±2.94</td>
<td>8.85 ±8.96</td>
</tr>
<tr>
<td>Group 9</td>
<td>13</td>
<td>16.99 (16.54)</td>
<td>22.82 ±3.44</td>
<td>8.80 ±8.81</td>
</tr>
<tr>
<td>Group 10</td>
<td>15</td>
<td>17.99 (17.45)</td>
<td>20.84 ±3.28</td>
<td>8.07 ±8.41</td>
</tr>
<tr>
<td>Mean</td>
<td>152</td>
<td>12.89</td>
<td>18.20 ±3.70</td>
<td>6.65 ±7.11</td>
</tr>
</tbody>
</table>

Table 2: BMI Groups and Relationship with Serum Leptin.

<table>
<thead>
<tr>
<th>BMI Groups According to Percentile</th>
<th>Number of Subjects</th>
<th>Body Mass Index Kg/m² (Mean ±SD)</th>
<th>Serum Leptin ng/ml (Mean ±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: underweight</td>
<td>25</td>
<td>14.35 ±1.63</td>
<td>3.28 ±5.90</td>
</tr>
<tr>
<td>5th to 85th percentile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2: Normal weight</td>
<td>103</td>
<td>17.85 ±2.45</td>
<td>5.32 ±5.46</td>
</tr>
<tr>
<td>5th to 85th percentile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: Overweight</td>
<td>23</td>
<td>24.08 ±2.98</td>
<td>16.42 ±8.39</td>
</tr>
<tr>
<td>>85th percentile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total and mean NSD of BMI and Serum Leptin</td>
<td>152</td>
<td>18.19 ±8.70</td>
<td>6.65 ±7.11</td>
</tr>
</tbody>
</table>

Figure 1: Relationship of Serum Leptin with Chronological Age (r = 0.225, p < 0.005)

Figure 2: Relationship of Serum Leptin with BMI. (r = 0.604, p < 0.000)
Pearson's correlation test was applied to observe the relationship between serum leptin concentration and BMI groups. A moderately significant positive correlation between serum leptin concentration and BMI groups was observed showing that as BMI groups advanced, serum leptin concentration significantly increased, \((r = 0.511, p < 0.000)\).

Discussion

The relationship of serum leptin concentration with chronological age and BMI appears to be controversial and intriguing. This study has determined a relationship between serum leptin concentration, chronological age and BMI in adolescent girls.

The leptin rose progressively with increase in age from 8 to 17.99 years from 4.40\(\pm\)5.21 ng/ml to 8.07\(\pm\)8.41 ng/ml with mean of 6.65\(\pm\)7.11 ng/ml. A positive correlation between serum leptin and chronological age was observed in this study showing that leptin level increases with increase in age, \((r = 0.225, p < 0.005)\). When leptin was correlated with age, wide distribution was observed in our study population. These results revealed that concentration of serum leptin varies by the difference in age and BMI. This gain of weight and BMI is due to higher fat mass in body. Our study also showed wide variation of serum leptin level in different individuals of same age group as evident from scatterplot in figure 1 (\(P = 0.005\)). Different studies highlighted these findings showing a wide variation of serum leptin level of same age group.\(^{20,21}\) Variation of serum leptin level in different subjects of same age group may be due to difference in BMI, body fat, level of adiposity, nutrition, nourishment, variability in feeding habits, exercise, regular physical training, ethnicity, and variability in body composition, environmental differences, different life style and mutation in gene.\(^{11,22,23}\) Our population is thin and lean, and has relatively low BMI as compared to other adolescent population so the leptin is also low.\(^{15,19,24,25,26}\)

Our results of serum leptin level in relationship with age are comparable to other studies carried in Spain, Brazil, Japan, and China.\(^{5,21,25,30}\) The study conducted in Brazil revealed that leptin concentration in girls showed a positive linear correlation with chronological age \((r = 0.35, P = 0.0012)\).\(^{28}\) An other study also reported almost same relationship of serum leptin level with age as in our study \((r = 0.26, P < 0.001)\).\(^{22}\) The study carried out in Japan also showed age related increase in serum leptin level with a weakly positive relationship \((r = 0.32, P < 0.001)\).\(^{29}\) Almost similar rise of serum leptin level were detected in a study carried in Colombia.\(^{22}\) Another study carried in Tibet China determines the serum leptin level in children of age range 12 to 16 years demonstrating the same trend, but level of serum leptin was higher in Tibetan girls compared to our study population \((5.74 \pm 1.49 \text{ng/dl at 12 years to } 13.33 \pm 2.56 \text{ng/dl at 17 years})\).\(^{18}\) Positive correlation of leptin with age in children was also observed in another study carried in India \((r = 0.56)\).\(^{18}\) In our study, there was substantial rise in leptin concentration between 12 and 13 years of age group probably related to weight gain during adolescence in majority of girls at this age group. In our study there was mild decrease observed after 15.99 years of age as serum leptin falls from 8.85\(\pm\)9.56 to 8.80\(\pm\)8.91 ng/ml and 8.07\(\pm\)8.41 ng/ml respectively in next two groups. Similar findings were also recorded by Wang et al. and Poveda et al.\(^{22,28}\) This decrease in serum leptin level seen at this age may be due to either stabilization or reduction of weight of subjects leading to slight fall in leptin level.\(^{22,23,25}\) It could be deduced that serum leptin level, despite considerable variation, increases with the increase in chronological age of adolescent girls and difference in leptin level may be due to racial differences.\(^{28}\)

Our study showed strong correlation of serum leptin concentration with BMI showing that serum leptin level increases with increase in BMI \((p < 0.000, r = 0.604)\). These results were consistent with various studies which revealed that serum leptin concentrations correlate well with BMI \((r = 0.76, P < 0.0001, r = 0.68, P < 0.0001)\).\(^{28}\) A longitudinal study conducted in Michigan conducted to examine the relationship between leptin as an index of energy balance, weight, adiposity, and fitness. This study revealed that one percent increase in body fat is related to a seven percent increase of leptin \((P < 0.0001)\) whereas 1 unit increase in BMI
increases leptin concentration by 15%.[22] BMI is a measure of total body fat although it is a good indicator of body fat in adults; it may be less accurate in adolescents.[22] During sexual maturity in girls, increase in body fat has been approximated 120% and this would lead approximately two fold rise in leptin concentration.[11,20] Most probably, the amount of serum leptin present in blood during sexual maturation in adolescent girls may be manifestation of gain in body fat.

A study carried in Brazil tried to construct reference ranges for leptin concentration according to BMI ranges (14-18, 19-23, >24) showing a positive correlation between two.[28] In our study, the serum leptin concentration increased with BMI rise, it is almost double in girls with BMI between 5th and 85th percentile than girls with BMI less than 5th percentile and overweight girls (BMI< 85th percentile) had the value three times than normal weight. Significant positive correlation between serum leptin concentration and BMI groups was observed showing that as BMI groups advanced, serum leptin concentration significantly increased,[5] (r = 0.511, and p <0.000) (Table 2).

Serum leptin level reflects adiposity status well when condition are in steady state but during dynamic conditions this relation is not very consistent, energy balance is dependent upon nutrition which may change leptin concentration.[22] In our study the children are in developmental stage their fat mass and body composition is in dynamic state that’s why there is wide variation in serum leptin level.

Conclusion

Serum leptin concentration has weak positive relation with chronological age. There is wide variation in leptin concentration in individual of same age group. As the BMI increased with age the serum leptin concentrations also increased progressively, showing significant positive correlation between serum leptin and BMI. There is marked difference in serum leptin concentration when the subjects were categorized as underweight, normal weight, and overweight, according to their BMI.

Limitations of this study: One should interpret these results under the light of our study limitations. One of the major limitations of this study is that it is cross-sectional in nature but the strength of our study is that we used large sample size and methodology is purely population based. A long study may be more helpful in understanding these relationships.

Acknowledgment:

We acknowledge the department of medical education Postgraduate Medical Institute Lahore for financial assistance and University of Health Science Lahore for conducting laboratory work for this research. We also acknowledge all the participants and their parents who participated in the study and provided required information for this study.

Funding Source: None

Conflict of interest: None
References

20. Horlick MB, Rosenbaum M, Nicolson M, Levine LS,

