Bronchodilatory Activity of Moringa Oleifera: An in-Vitro and in-Silico Analysis
DOI:
https://doi.org/10.21649/akemu.v31i3.5816Keywords:
Moringa oleifera, bronchodilatory effect, in-vitro experiment, in-silico studyAbstract
Background: Bronchodilation is a critical therapeutic approach in managing asthma. Traditional medicine documents bronchodilatory effects of Moringa oleifera, suggesting that it can help alleviate airway constriction and improve respiratory function.
Objective : To explore the bronchodilatory effect of Moringa oleifera leaf extract, through in-vitro and in-silico analysis.
Methods: An in-vitro experimental study and in-silico analysis was performed in the Pharmacology Department of CMH Lahore Medical College – From October 2022 to July 2023.
Swiss albino mice were used for the study. Trachea was dissected and mounted in organ baths connected to the PowerLab data acquisition system. Contractions were induced using acetylcholine (ACh) and high potassium chloride (KCl), and incremental doses of the Moringa oleifera leaf extract were cumulatively added to observe bronchodilator activity. This was followed by in-silico analysis of catechin, gallic acid, quercetin and isoquercetin. Pharmacokinetic profiling and molecular docking were carried out.
Results: Moringa oleifera leaf extract reduced contractions induced by Ach and KCl, leading to tracheal relaxation, with an IC50 of 1.223 mg and 4.574 mg, respectively. A significant difference between the IC50 values of ACh and KCl induced contractions was observed (p=0.0008).
Pharmacokinetic profiling documented drug likeness for catechin, gallic acid, and quercetin. Molecular docking analysis revealed that quercetin exhibited the highest binding affinity to the voltage gated calcium channel.
Conclusion: In-vitro investigation demonstrated the significant bronchodilatory effect of Moringa oleifera. The in-silico analysis provided insights into potential active compounds, with quercetin showing promising interactions with the target protein.
References
1. Fidrianny I, Kanapa I, Singgih M. Phytochemistry and pharmacology of moringa tree: an overview. Biointerface
Res Appl Chem. 2021; 11(3): 10776-89. doi:10.33263/ BRIAC113.1077610789
2. Abdalla HA, Ali M, Amar MH, Chen L, Wang QF. Characterization of phytochemical and nutrient compounds
from the leaves and seeds of Moringa oleifera and Moringa peregrina. Horticulturae. 2022; 8(11): 1081-97. doi.org/10.3390/horticulturae8111081
3. Azlan UK, Mediani A, Rohani ER, Tong X, Han R, Misnan NM, et al. A comprehensive review with updated future perspectives on the ethnomedicinal and pharmacological aspects of Moringa oleifera. Molecules. 2022; 27(18): 5765-807. doi:10.3390/molecules27185765
4. Llorent-Martínez EJ, Gordo-Moreno AI, Fernández-de Córdova ML, Ruiz-Medina A. Preliminary phytochemical
screening and antioxidant activity of commercial Moringa oleifera food supplements. Antioxidants. 2023; 12(1): 110-24. doi:10.3390/antiox12010110
5. Suresh S, Chhipa AS, Gupta M, Lalotra S, Sisodia SS, Baksi R, et al. Phytochemical analysis and pharmacological
evaluation of methanolic leaf extract of Moringa oleifera Lam. in ovalbumin induced allergic asthma.
S Afr J Bot. 2020; 130(5):484-93. doi:10.1016/ j.sajb. 2020.01.046.
6. Xiao X, Wang J, Meng C, Liang W, Wang T, Zhou B, et al. Moringa oleifera Lam and its therapeutic effects in immune disorders. Front Pharmacol. 2020; 11:566783. doi:10.3389/fphar.2020.566783
7. Yunusa S, Musa A. Evaluation of antidepressant effect of ethanol extract and chloroform fraction of Moringa oleifera Lam. (Moringaceae) leaf in mice. J Drug Res Dev. 2018; 4(1): 2470-75. doi:10.16966/2470-1009.140
8. Chen GL, Xu YB, Wu JL, Li N, Guo MQ. Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food Chem. 2020; 333:127478. doi:10.1016/j.foodchem.2020.127478
9. Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine. 2019; 54(2):9-16. doi:10.1016/j.phymed.2018.10.023
10. Aekthammarat D, Tangsucharit P, Pannangpetch P, Sriwantana T, Sibmooh N. Moringa oleifera leaf extract enhances endothelial nitric oxide production leading to relaxation of resistance artery and lowering of arterial blood pressure. Biomed Pharmacother. 2020; 130(10):110605. doi:10.1016/j.biopha.2020.110605
11. Tshabalala T, Ncube B, Madala NE, Nyakudya TT, Moyo HP, Sibanda M, et al. Scribbling the cat: a case of the “miracle” plant, Moringa oleifera. Plants. 2019; 8(11):510. doi:10.3390/plants8110510
12. Rahayu I, Timotius KH. Phytochemical analysis, antimutagenic and antiviral activity of Moringa oleifera L. leaf infusion: in vitro and in silico studies. Molecules. 2022; 27(13):4017. doi:10.3390/molecules27134017
13. Abe T, Koyama Y, Nishimura K, Okiura A, Takahashi T. Efficacy and safety of fig (Ficus carica L.) leaf tea in adults with mild atopic dermatitis: a double-blind, randomized, placebo-controlled preliminary trial. Nutrients. 2022; 14(21):4470. doi:10.3390/nu14214470
14. Hewedy WA. Effect of Boswellia serrata on rat trachea contractility in vitro. Nat Prod J. 2020; 10(1): 33-43. doi:10.2174/2210315509666190206122050
15. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021; 128(1): 4-8. doi: 10.1111/bcpt.13492
16. Siddiqui WA, Qayyum M, Qureshi AQ, Khalid M, Zaffar S, Bilal R. The bronchodilator potential of Astragalus sarcocolla: an in vitro experiment. J Coll Physicians Surg Pak. 2024; 34(1): 58-62. doi: 10.29271/jcpsp.2024.01.58.
17. Alam P, Parvez MK, Arbab AH, Al-Dosari MS. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis. Pharm Biol. 2017; 55(1):1317-23. doi:10.1080/13880209.2017.1300175
18. Younis N, Khan MI, Zahoor T, Faisal MN. Phytochemical and antioxidant screening of Moringa oleifera for its utilization in the management of hepatic injury. Front Nutr. 2022; 9(12):1078896. doi:10.3389/fnut.2022.1078896
19. Bhong PN, Nilofar NS, Pratibha MR, Madhavi BS. In-vitro and in-vivo evaluation of anti-asthmatic activity of Eugenia jambolana bark. Res J Pharm Technol. 2021; 14(6):3337-42. doi:10.52711/0974-360X.2021.00580
20. Shady NH, Mostafa NM, Fayez S, Abdel-Rahman IM, Maher SA, Zayed A, et al. Mechanistic wound healing and antioxidant potential of moringa oleifera seeds extract supported by metabolic profiling, in silico network design, molecular docking, and in vivo studies. Antioxidants. 2022; 11(9):1743. doi:10.3390/antiox11091743
21. Saqib F, Al-Huqail AA, Asma M, Chicea L, Hogea M, Irimie M, et al. Dose-dependent spasmolytic, bronchodilator, and hypotensive activities of Panicum miliaceum L. Dose-Response. 2022; 20(1): 15593258221079592. doi:10.1177/15593258221079592
22. Siddiqui WA, Mazhar MU, Malik JA, Talat A, Zaffar S, Rashid H, et al. The spasmolytic effect of Astragalus sarcocolla on the intestinal smooth muscles of rabbit in vitro: potassium channel opening. Cureus. 2020; 12(7):e9066. doi:10.7759/cureus.9066
23. Zaffar S, Qayyum M, Khalid M, Zia MR, Aftab M, Siddiqui WA. Vasorelaxant Properties of Moringa oleifera leaf extract: An in-vitro study on mice blood vessels. Pak J Med Health Sci. 2023; 17(5):113-16. doi:10.53350/pjmhs2023175113
24. Bolger GB. Therapeutic targets and precision medicine in COPD: Inflammation, ion channels, both, or neither? Int J Mol Sci. 2023; 24(24):17363-83. doi:10.3390/ijms242417363
25. He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, et al. Structure, gating, and pharmacology of human CaV3. 3 channel. Nat Commun. 2022; 13(1):2084. doi: 10.1038/s41467-022-29728-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annals of King Edward Medical University

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments publications@kemu.edu.pk